

厚生労働省発食安第1120003号 平成 1 8 年 1 1 月 2 0 日

薬事・食品衛生審議会 会長 井村 伸正 殿

諮問書

食品衛生法(昭和22年法律第233号)第10条の規定に基づき、下記の事項について、貴会の意見を求めます。

記

ネオテームの食品添加物としての指定の可否について

ネオテームの食品添加物の指定に関する添加物部会報告書(案)

1. 品目名

ネオテーム

Neotame

(3S)-3-(3,3-dimethylbutylamino)-3- $\{[(1S)$ -1-(methoxycarbonyl)-2-phenylethyl]carbamo yl}propanoic acid

CAS 番号: 165450-17-9

2. 構造式、分子式及び分子量

構造式

分子式 $C_{20}H_{30}N_2O_5$ 分子量 378.46

3. 用途

甘味料

4. 概要及び諸外国での使用状況

ネオテームは、アスパルテームを N-アルキル化することにより得られた ジペプチドメチルエステル誘導体の甘味料である。その甘味度は、使用す る食品の種類や配合組成によって異なるが、砂糖の 7,000~13,000 倍、ア スパルテームの約 30~60 倍である。 本品は、米国、オーストラリア等の19カ国以上で食品添加物として甘味及びフレーバー増強の目的で使用されている。欧州においては、認可に向け検討が進められているところである。FAO/WHO合同食品添加物専門家会議(JECFA)では、2003年6月に安全性評価が行われている。

5. 食品添加物としての有効性

(1) 甘味度

ネオテームの甘味度を砂糖等価甘味度で評価した¹⁾。ネオテームの各濃度(2、4、9、20、40 ppm)の水溶液を調製し、官能検査により甘味の強さを評価し、同等の甘味を与える砂糖水溶液濃度(砂糖等価甘味度:%SE)で表した。

その結果を、ネオテームの濃度に対する砂糖等価甘味曲線として図1に示した。この近似曲線から、砂糖8%と同じ甘さ(8%SE)を与えるネオテームの濃度は10.3 ppmであった。

また、ネオテームと砂糖の甘味度を比較した結果(表 1)、ネオテームの甘味 度は砂糖の約7,000~13,000 倍であった。

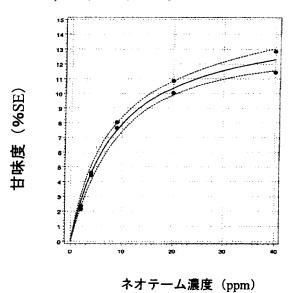


図1 ネオテームの砂糖等価甘味度曲線

●:実測値、---:近似曲線、---:95%信頼限界

近似曲線:

甘味度 (%SE) =
$$\frac{Rmax}{1/K \times 1/C+1} = \frac{15.1}{9.18 \times 1/C+1}$$

Rmax: 最大甘味度 (%SE)、1/K: 最大甘味の 1/2 を与える濃度 (ppm)、C: 濃度 (ppm)

表1 ネオテームと砂糖の甘味度比較表

甘味度(%SE)	甘味倍率 (砂糖/ネオテーム)
3	13181
4	12092
5	11002
6	9913
7	8824
8	7734
9	6645

(2) 安定性

ネオテームとアスパルテームの安定性について比較したところ、以下に示すとおりネオテームはアスパルテームと比較して安定であった。

1) 熱安定性

1%ミルク (1%脂肪、pH6.5) にネオテーム (25 ppm) またはアスパルテーム (500 ppm) を各々添加し、均質化後、142℃で 8 秒間の UHT *処理を行った。UHT 処理前後の甘味料の含有量を測定し、ミルクにおける UHT 処理がネオテームの 安定性に及ぼす影響を検討した。その結果、UHT 処理後のネオテームの残存率は 91.0%、アスパルテームは 69.0%であった ²⁾。

同様に、ヨーグルト製造工程中において、85℃で 40 秒間の HTST[†]処理後のネオテーム(25 ppm)とアスパルテーム(525 ppm)の安定性を比較した。その結果、ネオテームの残存率は 98.7%であり、アスパルテームの残存率は 89.5%であった³⁾。

また、イエローケーキにおける焼成工程中の耐熱性について、ネオテーム (35 ppm) とアスパルテーム (約 2,700 ppm) を比較したところ、ネオテームの残存率は 85.1%であり、アスパルテームの残存率は 59.3%であった $^{4)}$ 。

2) 発酵耐性

ネオテームとアスパルテームについて、ヨーグルトの発酵工程(40°C、6時間) における安定性を比較したところ、発酵工程中のネオテームの残存率は87.9%

^{*}UHT:超高温殺菌法 (乳等省令では、自動制御装置をつけた連続式超高温殺菌装置により摂氏ーニ〇度から一五〇度で一秒以上三秒以内で殺菌する方法)

[†] HTST:高温短時間殺菌法(乳等省令では、自動制御装置をつけた連続式高温短時間 殺菌装置により摂氏七二度以上で一五秒以上殺菌する方法)

であり、アスパルテームの残存率は 56%であった³⁾。

3)保存安定性

ョーグルトを 8 週間冷蔵保存したとき、ネオテーム、アスパルテームともに減少は見られず、安定性は良好であった 3 。

イエローケーキを 25°C、湿度 60%で 5 日間保存したとき、ネオテームの残存率は 94.6%であり、アスパルテームの残存率は 83.9%であった⁴⁾。

(3) その他

1) 味質特性

ネオテーム(10ppm)の味質特性を砂糖(8%)、アスパルテーム(560ppm)、アセスルファムカリウム(900ppm)、calcium saccharin^{**}(375ppm)の味質特性と比較した。甘味料水溶液の味質特性を官能評価により評価したところ、図 2 に示したように、ネオテームは、アセスルファムカリウムや calcium saccharin と比べ、苦味及び苦味の後味が少なく 5)、また、アスパルテーム、アセスルファムカリウムや calcium saccharin より甘味の発現が遅く、アスパルテームと同様に甘味の後味が長く残るという味質特性を示した 6)。

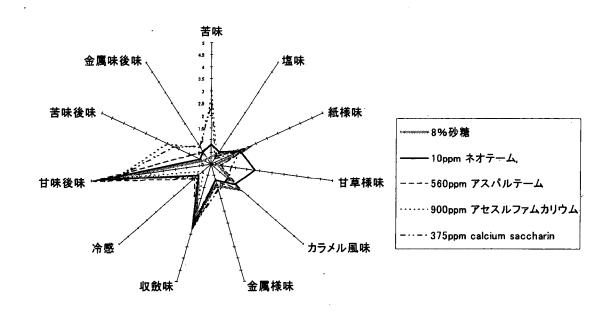


図2 味質特性の比較

^{**} calcium saccharin (サッカリンカルシウム):現在国内で未指定、国際汎用添加物として平成 18 年 5 月 22 日付食品安全委員会に諮問

2) フレーバー増強効果

トロピカルフルーツパンチ飲料を用いたネオテームの甘味の閾値以下量 (0.1 ~4.1ppm) でフレーバーの強さを比較した試験において、ネオテームを 1ppm 以上添加した場合、ネオテームを添加しなかった対照と比較してフレーバーが強いと評価された⁷⁾。

6. 食品安全委員会における評価結果について

食品安全基本法(平成 15 年法律第 48 号)第 24 条第 1 項第 1 号の規定に基づき、 平成 17 年 1 月 31 日厚生労働省発食安第 0131001 号により食品安全委員会あて意 見を求めたネオテームに係る食品健康影響評価については、平成 17 年 7 月 22 日、 8 月 30 日、平成 18 年 1 月 19 日及び 5 月 31 日に開催された添加物専門調査会の 議論を踏まえ、以下の評価結果が平成 18 年 10 月 19 日付けで通知されている。

ネオテームの NOAEL は、ラットを用いた二世代繁殖試験における F_1 児動物の 低体重を根拠に NOAEL 96.5 mg/kg 体重/日と考えられることから、本物質の ADI は、安全係数を 100 として 1.0 mg/kg 体重/日と評価した。

なお、その詳細は下記の通りである。

ネオテームの各種動物試験やヒトへの投与試験データを評価した結果、催奇形性、遺伝毒性及び発がん性はなく、本物質の摂取による主な影響は、高用量投与群でみられた体重増加抑制と血清アルカリフォスファターゼ(ALP)の上昇であった。このうち、イヌやラットで認められた ALP の上昇については、他の酵素活性は変動せず、かつ、病理組織学的検査等においても投与による影響は認められなかったが、ヒトへの影響を必ずしも完全に否定できるわけではないという安全サイドに立った考え方により、毒性影響と評価した。ただし、イヌ13週間混餌投与試験では、200 mg/kg 体重/日以上の投与群でみられた ALP の上昇を根拠に NOAEL 59.7 mg/kg 体重/日が得られたが、同様の方法でさらに長期間投与したイヌ 52週間混餌投与試験では、200 mg/kg 体重/日投与群で ALP の上昇は認められなかったこと及び本物質には蓄積性がないことから、イヌ 13週間混餌投与試験の 200 mg/kg 体重/日投与群でみられた ALP の上昇は一過性のものであり、ADI 設定にあたっては本試験の NOAEL は考慮しないと評価した。

一方、体重増加抑制については、本物質を高濃度に飼料へ添加したことによる実験動物の嗜好性の低下に起因した摂餌量の減少によるものと判断し、毒性 影響とは評価しなかった。ただし、ラットを用いた二世代繁殖試験でみられた 授乳初期の F₁ 児動物における低体重については、親動物に嗜好性の低下はみられず、新生児の成長は母乳に依存していることから、本試験の児の低体重を毒性影響と評価した。

以上のことから、ネオテームの NOAEL は、ラットを用いた二世代繁殖試験における F_1 児動物の低体重を根拠に NOAEL 96.5 mg/kg 体重/日と考えられることから、本物質の ADI は、安全係数を 100 として 1.0 mg/kg 体重/日と評価した。

なお、限られたデータではあるが、本物質の分解物においても、生体にとって特段問題となるような影響は認められていない。

ADI

1.0 mg/kg 体重/日

(ADI 設定根拠資料)

二世代繁殖試験

(動物種)

ラット

(投与方法)

混餌投与

(NOAEL 設定根拠所見) F₁児動物の低体重

(NOAEL)

96.5 mg/kg 体重/日

(安全係数)

100

7. 摂取量の推計

上記の食品安全委員会の評価結果によると以下の通りである。

ネオテームは、甘味料として様々な食品に使用されることが推定される。

平成 13 年国民栄養調査成績の食品群別摂取量(総数)をもとに、食品中の砂糖をすべてネオテームに置き換えた場合を仮定し、食品摂取量とネオテームの添加量から算出すると、ネオテームの推定摂取量は 3.84 mg/ヒト/日(体重 50kg として 0.0769 mg/kg 体重/日)となる。同様に、年齢別の食品群別摂取量より、1~6 歳は 3.54 mg/ヒト/日(0.225 mg/kg 体重/日)、7~14 歳は 4.45 mg/ヒト/日(0.118 mg/kg 体重/日)と推定される。また、ネオテーム摂取に伴う分解物NC-00777、NC-00764 及び NC-00779 の一日推定摂取量は、それぞれ、0.042 μ g/kg 体重/日、0.136 μ g/kg 体重/日及び 0.021 μ g/kg 体重/日と推定される。

一方、平成14年度マーケットバスケット方式による8種甘味料の摂取量調査をもとに、アスパルテームをすべてネオテームで置き換えた場合を仮定し、摂取量をアスパルテームに対するネオテームの甘味度比40倍で除すると、ネオテームの推定摂取量は0.146 mg/ヒト/日(0.00292 mg/kg 体重/日)となる。同様に、英国及び米国のアスパルテームの平均及び90パーセンタイル摂取量をもとに、甘味度比を31として算出すると、ネオテームの平均及び90パーセンタイル推定摂取量は、英国で0.01及び0.05 mg/kg 体重/日、米国で0.04 及び0.10

mg/kg 体重/日となる。

なお、ネオテームは、フレーバー増強剤(香料)として、様々な食品に甘味の発現しない低濃度(閾値(4.1 ppm)以下)で使用されることが推定されるが、香料として使用される量は、甘味料として使用する量と比較して著しく少ないと推定され、また、既に甘味料としてネオテームが使用されている食品においては、香料として使用することはないと考えられることから、上記の一日推定摂取量には、香料としての一日推定摂取量が包括されると考えられる。

8. 新規指定について

ネオテームを食品衛生法第10条に基づく添加物として指定することは差し 支えない。ただし、同法第11条第1項の規定に基づき、次の通り成分規格(案) を定めることが適当である。

また、食品安全委員会による評価結果及び摂取量の推計から、ADIよりもその摂取量が十分に低いため、使用基準は設定しないこととすることが適当である。

なお、オーストラリア、フランス等では特段の使用基準を設定されておらず、 米国においては GMP のもとで使用することとされている。

(使用基準案)

設定しない

(成分規格案)

成分規格を別紙1のとおり設定することが適当である。(設定根拠は別紙2、 JECFA 規格等との対比表は別紙3のとおり。)

[引用文献]

- Ziegler J, Study of sweetness potency of NC-00723 compared to aspartame in water and flavor profile of NC-00723. (1997) Study number (NP 97-019). Unpublished report from Duke University, Durham, NC, U.S.A.
- 2) Donovan P. Stability comparison of neotame and aspartame in 1% milk subjected to ultra high temperature pasteurization. (1999) Unpublished report from The NutraSweet Kelco Company, Mt. Prospect, IL, U.S.A.
- 3) Brahmbhatt DV. Comparative study of neotame (NC-00723, NTM) and aspratame (APM) stability in plain yogurt during processing through 8 weeks of storage. (1999) Unpublished report from The NutraSweet Kelco Company, Mt. Prospect, IL, U.S.A.

- 4) Brahmbhatt DV. Comparative study of neotame (NC-00723) and aspartame (APM) in yellow cake. (1999) Unpublished report from The NutraSweet Kelco Company, Mt. Prospect, IL, U.S.A.
- Woytek B. Amended sensory evaluation report for sensory study #3325(01) sweetened water solutions: neotame versus competitive sweeteners. (1999) Unpublished report from The NutraSweet Kelco Company, Mt. Prospect, IL, U.S.A.
- 6) Pajor L. Sensory evaluation report temporal profile results of neotame, sucrose, aspartame, saccharin and acesulfame-K in water SS#3136. (1999) Unpublished report from The NutraSweet Kelco Company, Mt. Prospect, IL, U.S.A.
- 7) Hatchwell LC. Evaluation of NC-00723 as a flavor enhancer. (1998) Study number (NP 97-037). Unpublished report from The NutraSweet Kelco Company, Mt. Prospect, IL, U.S.A.

これまでの経緯

平成 17 年 1月 31日	厚生労働大臣から食品安全委員会委員長あてに添加物の
	指定に係る食品健康影響評価について依頼
平成 17 年 2月 3日	第80回食品安全委員会(依頼事項説明)
平成 17 年 7 月 22 日	第23回食品安全委員会添加物専門調査会
平成 17 年 8 月 30 日	第24回食品安全委員会添加物専門調査会
平成 18 年 1月 19日	第 28 回食品安全委員会添加物専門調査会
平成 18 年 5 月 31 日	第32回食品安全委員会添加物専門調査会
平成 18 年 9 月 7 日	第 158 回食品安全委員会(報告)
~平成 18 年 10 月 6 日	食品安全委員会における国民からの意見聴取
平成 18 年 10 月 13 日	第37回食品安全委員会添加物専門調査会
平成 18 年 10 月 19 日	第 164 回食品安全委員会(報告)
	食品安全委員会より食品健康影響評価結果が通知
平成 18 年 11 月 20 日	薬事・食品衛生審議会へ諮問
平成 18 年 12 月 8 日	薬事・食品衛生審議会食品衛生分科会添加物部会

●薬事・食品衛生審議会食品衛生分科会添加物部会 [委員]

	. Al					
	石田 裕美 女子栄養大学教授					
	小沢	理恵子	日本生活協同組合連合会くらしと商品研究室長			
	工藤	一郎	昭和大学薬学部教授			
	佐藤	恭子	国立医薬品食品衛生研究所食品添加物部第一室長			
	棚元	憲一	国立医薬品食品衛生研究所食品添加物部長			
0	長尾	美奈子	共立薬科大学客員教授			
i	中澤	裕之	星薬科大学薬品分析化学教室教授			
	西島	基弘	実践女子大学生活科学部食品衛生学研究室教授			
	堀江	E-	埼玉県衛生研究所水・食品担当部長			
	米谷	民雄	国立医薬品食品衛生研究所食品部長			
	山川	隆	東京大学大学院農学生命科学研究科助教授			
	山添	康	東北大学大学院薬学研究科教授			
	吉池	信男	独立行政法人国立健康・栄養研究所研究企画評価主幹			
	-					

(○:部会長)

成分規格案

ネオテーム

Neotame

ジメチルブチルアスパルチルフェニルアラニンメチルエステル

C20H30N2O5

分子量 378.46

(3S)-3-(3,3-dimethylbutylamino)-3-{[(1S)-1-(methoxycarbonyl)- 2-phenylethyl]carbamoyl}propanoic acid [165450-17-9]

量 本品を無水物換算したものは、ネオテーム(C₂₀H₃₀N₂O₅)97.0~102.0%を含む。 含

状 本品は、白~灰白色の粉末である。

確認試験 本品を赤外吸収スペクトル測定法中の臭化カリウム錠剤法により測定し、本品のスペ クトルを参照スペクトルと比較するとき,同一波長のところに同様の強度の吸収を認める。

純度試験 (1) 比旋光度 $\left[\alpha\right]_{n}^{20} = -40.0^{\circ} \sim -43.4^{\circ}$ (0.25 g, 水, 50 ml, 無水物換算)

- (2) 液性 pH 5.0~7.0 (1.0g, 水 200ml)
- (3) 鉛 Pbとして1 μg/g以下

本品 10.0g を量り、白金製又は石英製のるつぼに入れ、硫酸少量を加えて潤し、徐々に加 熱してできるだけ低温でほとんど灰化した後、放冷し、更に硫酸 5 ml を加え、徐々に加熱し て 450~550℃で灰化するまで強熱する。残留物に少量の硝酸(1→150)を加えて溶かし、 更に硝酸(1→150)を加えて 10ml とし、検液とする。鉛試験法第1法により試験を行う。

- (4) ヒ素 As₂O₃として 4 μg/g 以下 (0.50g, 第1法, 装置 B)
- (5) N-(3,3-ジメチルブチル)-L- α -アスパルチル-L-フェニルアラニン 1.5%以下 定量法のA液を検液とする。別に N-(3,3-ジメチルブチル)-L-α-アスパルチル-L-フェニルア ラニン(あらかじめ本品と同様の方法で水分を測定しておく)約 0.03g を精密に量り,定量 法中の移動相と同一組成の液に溶かして正確に 50ml とする。この液 10ml を正確に量り、移 動相と同一組成の液を加えて正確に 100ml とし, 標準原液とする。標準原液 2, 10, 25, 50ml を正確に量り、それぞれに移動相と同一組成の液を加えて正確に 100ml とし、標準液とする。

検液、標準液及び標準原液をそれぞれ 25 μ l ずつ量り、次の操作条件で液体クロマトグラフィーを行う。標準液及び標準原液の N-(3,3-ジメチルブチル)-L- α -アスパルチル-L-フェニルアラニンのピーク面積を測定し、検量線を作成する。次に、検液の N-(3,3-ジメチルブチル)-L- α -アスパルチル-L-フェニルアラニンのピーク面積を測定し、検量線から検液中の N-(3,3-ジメチルブチル)-L- α -アスパルチル-L-フェニルアラニンの量 W (mg/ml) を求め、次式により N-(3,3-ジメチルブチル)-L- α -アスパルチル-L-フェニルアラニンの含量を求める。

N-(3,3-ジメチルブチル)-L-α-アスパルチル-L-フェニルアラニンの含量

操作条件 定量法の操作条件を準用する。ただし、流量は、№(3,3-ジメチルブチル)-L-α-アスパルチル-L-フェニルアラニンの保持時間が約4分になるように調整する。

(6) その他の不純物 2.0%以下

定量法のA液及び標準液を検液及び標準液とし、それぞれ 25 μ l ずつ量り、次の操作条件で液体クロマトグラフィーを行う。検液のネオテーム、N-(3,3-ジメチルブチル)-L- α -アスパルチル-L-フェニルアラニン及び溶媒以外のピークの合計面積 Asum 及び標準液のネオテームのピーク面積 As を測定し、次式によりその他の不純物の量を求める。ただし、面積測定範囲は、ネオテームの保持時間の 1.5 倍までとする。

その他の不純物の量

操作条件

定量法の操作条件を準用する。

水 分 5.0%以下 (0.25 g, 直接滴定)

強熱残分 0.2%以下(1g, 800℃, 1時間)

定量法 本品約 $0.1\,\mathrm{g}$ を精密に量り、移動相と同一組成の液に溶かして正確に $50\,\mathrm{ml}$ とし、A液とする。A液 $25\,\mathrm{ml}$ を正確に量り、移動相と同一組成の液を加えて正確に $50\,\mathrm{ml}$ とし、検液とする。別に定量用ネオテーム(あらかじめ本品と同様の方法で水分を測定しておく)約 $0.05\,\mathrm{g}$ を精密に量り、移動相と同一組成の液に溶かして正確に $50\,\mathrm{ml}$ とし、標準液とする。検液及び標準液をそれぞれ $25\,\mathrm{\mul}$ ずつ量り、次の操作条件で液体クロマトグラフィーを行う。検液及び標準液のネオテームのピーク面積 A_T 及び A_S を測定し、次式により含量を求める。

ネオテーム (C₂₀H₃₀N₂O₅) の含量

$$=$$
 無水物換算した定量用ネオテームの採取量(g) \times A_T \times 200 (%) 無水物換算した試料の採取量(g) \times A_S

操作条件

検出器

紫外吸光光度計 (測定波長 210nm)

カラム充てん剤

5μm の液体クロマトグラフィー用オクタデシルシリル化シリカゲル

カラム管

内径 4.6 mm, 長さ 10 cm のステンレス管

カラム温度

45℃付近の一定温度

移動相

1-ヘプタンスルホン酸ナトリウム 3.0 g を水 740 ml に溶かし、トリエチルアミン 3.8 ml を加え、リン酸で pH を 3.5 に調整した後、更に水を加えて 750 ml とする。この液にアセトニトリル 250 ml を加え、リン

酸で pH を 3.7 に調整する。

流量

ネオテームの保持時間が約12分になるように調整する。

試薬・試液

ル-(3,3-ジメチルブチル)-L-α-アスパルチル-L-フェニルアラニン

 $M-[M-(3,3-ジメチルブチル)-L-\alpha-アスパルチル]-L-フェニルアラニンを見よ。$

 $N-[N-(3,3-ジメチルブチル)-L-α-アスパルチル]-L-フェニルアラニン <math>C_{19}H_{28}N_2O_5$ 主として ネオテームをアルカリ条件下で加水分解して得られる。本品は白~灰白色の粉末である。

確認試験 本品を赤外吸収スペクトル測定法中の臭化カリウム錠剤法により測定するとき, 3,290 cm⁻¹, 3,150 cm⁻¹, 2,960 cm⁻¹, 1,690 cm⁻¹, 1,560 cm⁻¹, 750 cm⁻¹ 及び 700 cm⁻¹ のそれぞれ の付近に吸収帯を認める。

純度試験 類縁物質 本品約 0.1 g を「ネオテーム」の定量法中の移動相と同一組成の液 100 ml に溶かし、検液とする。この液 1ml を正確に量り、移動相と同一組成の液を加えて正確に 100 ml とし、比較液とする。検液及び比較液をそれぞれ 25 μl ずつ量り、次の操作条件で液体クロマトグラフィーを行い、ピーク面積を測定するとき、検液中の主ピーク以外のピーク面積の合計は、比較液の主ピーク面積より大きくない。ただし、面積測定範囲は、溶媒ピークの後ろから主ピークの保持時間の 5 倍までとする。

強熱残分 0.2%以下

トリエチルアミン $(C_2H_5)_3N$ 無色澄明の液で、強いアミン臭がある。メタノール、エタノール (95) 又はジエチルエーテルと混和する。

比重 d : 0.722~0.730

沸点 89~90℃

1-ヘプタンスルホン酸ナトリウム $C_7H_{15}NaO_3S$ 本品は、白色の結晶又は結晶性の粉末である。 含量 98.0%以上

純度試験 溶状 本品 1.0 g を水 10 ml に溶かすとき、液は無色透明である。

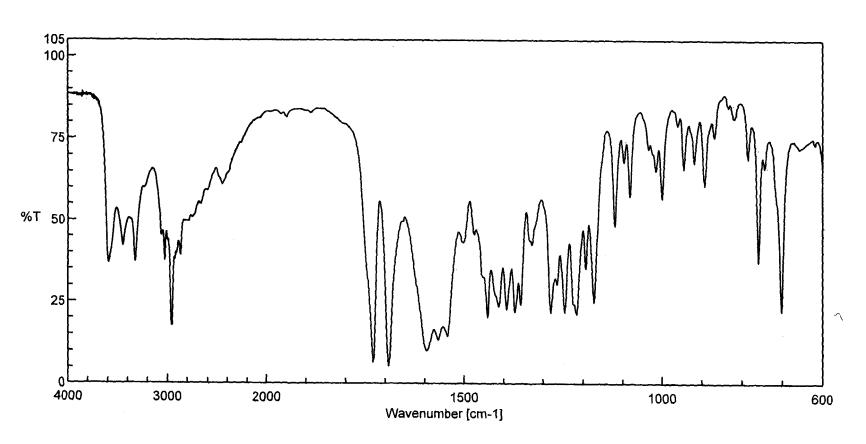
乾燥減量 3.0%以下(1g, 105℃, 3時間)

定量法 乾燥した本品約 0.4 g を精密に量り、水 50 ml に溶かし、カラムクロマトグラフィー用 強酸性イオン交換樹脂 (425~600 μm, H型) 10 ml を内径 9 mm, 高さ 160 mm のクロマトグラフ管に充てんしたクロマトグラフ柱に入れ、1 分間約 4 ml の速度で流す。次にクロマトグラフ柱を水 150 ml を用いて 1 分間約 4 ml の速度で洗う。洗液を先の流出液に合わせ、0.1 mol/L 水酸化ナトリウム液で滴定する(指示薬 ブロモチモールブルー試液 10 滴)。終点は、液の色が黄色から青色に変わるときとする。

0.1 mol/L 水酸化ナトリウム液 1 ml = 20.23 mg C₇H₁₅NaO₃S

ネオテーム,定量用 $C_{20}H_{30}N_2O_5$ 主としてアスパルテームと 3,3-ジメチルブチルアルデヒドと の一段階反応で得られる。本品は白~灰白色の粉末である。

確認試験 本品を赤外吸収スペクトル測定法中の臭化カリウム錠剤法により測定するとき, 3,320 cm⁻¹, 2,960 cm⁻¹, 1,730 cm⁻¹, 1,690 cm⁻¹, 1,590 cm⁻¹, 1,210 cm⁻¹, 760 cm⁻¹ 及び 700 cm⁻¹ のそれぞれの付近に吸収帯を認める。


純度試験 類縁物質 本品約 0.1g を「ネオテーム」の定量法中の移動相と同一組成の液移動相 100 ml に溶かし、検液とする。この液 1ml を正確に量り、移動相と同一組成の液を加えて正確に 100 ml とし、比較液とする。検液及び比較液をそれぞれ 25 μl ずつ量り、次の操作条件で液体クロマトグラフィーを行い、ピーク面積を測定するとき、検液の主ピーク以外のピークの合計面積は、比較液の主ピーク面積より大きくない。ただし、面積測定範囲は、溶媒ピークの後ろから主ピークの保持時間の 1.5 倍までとする。

操作条件 「ネオテーム」の定量法の操作条件を準用する。

定量用ネオテーム

ネオテーム、定量用を見よ。

ネオテーム規格設定の根拠

含 量

JECFA は 97.0~102.0% (無水物換算) を規格値としている. 一方, FCC は 97.0~102.0% (乾燥物換算) を規格値としている. しかし, FCC には乾燥減量に係る規格はなく, 水分に係る規格が設定されていることから, 無水物換算を意味するものと考えられる. そこで, 本規格案では「無水物換算したものは, ネオテーム $(C_{20}H_{30}N_2O_5)$ 97.0~102.0%を含む」を採用した.

性 状

FCC は「白色~灰白色の粉末」及び溶解性(水にやや溶けにくく,アルコールに溶けやすい)並びに液性(0.5%溶液,pH5.0~7.0)を規定している.一方,JECFA は「白色~灰白色の粉末」を規格とし、溶解性を確認試験に、液性を純度試験に規定している.本規格案では、溶解性については、IR による確認試験を規定しており、「溶解性」の必要性は低いことから採用しない。また、液性を純度試験に規定することとし、性状は、「本品は白~灰白色の粉末」とした。

確認試験

JECFA 及び FCC ではいずれも IR (臭化カリウム錠剤法) を規定していることから、本規格案でも IR (臭化カリウム錠剤法) を採用した.

純度試験

- (1) 比旋光度 JECFA の規格は「[α]_D²⁰ = -40.0° ~ -43.3° (無水物換算)」であり、FCC の規格では「[α]_D²⁰ = -40.0° ~ -43.4° (乾燥物換算)」である。本規格案では FCC の規格値を採用した。ただし、水分補正については含量の項と同様の理由から、「[α]_D²⁰ = -40.0° ~ -43.4° (無水物換算)」とした。
- (2) **液性** FCC では性状に規定されているが、JECFA では純度試験に規定されている. 本規格 案では JECFA に倣い「pH 5.0~7.0 (1.0g, 水 200ml)」を採用した.
- (3) 鉛 JECFA 及び FCC では規格値を Pb として 1 mg/kg 以下としていることから、本規格案では「Pb として 1.0 μg/g 以下」とした.
- (4) ヒ素 ヒ素の混入する可能性がほとんどないことから、JECFA 及び FCC の規格においてヒ素の規格は設定されていない。しかし、本規格案では他の甘味料の規格に準じ「As₂O₃ として 4.0 μg/g 以下」を採用した。
- (5) N-[N-(3,3-ジメチルブチル)-L-α-アスパルチル]-L-フェニルアラニン JECFA 及び FCC での 規格値は 1.5%以下である. 本規格でも「1.5%以下」とした.
- (6) その他の関連物質 JECFA 及び FCC での規格値は 2.0%以下である. 本規格でも「2.0%以下」とした.

水 分

JECFA 及び FCC での規格値は 5.0%以下である.本規格でも規格値を「5.0%以下」とした.

強熱残分

JECFA 及び FCC での規格値は 0.2%以下である。本規格でも「0.2%以下」とすることが妥当として採用した。

定量法

JECFA 及び FCC では液体クロマトグラフィーにより含量測定を行っている. 液体クロマトグラフィーは精度が高く, 広く普及しており, 実務的にも測定機器を含めた測定環境に問題がないことから採用した. ただし、移動相の調製法については JECFA の調製法を採用した.

本規格では採用しなかった試験方法及び項目

融解範囲

液体クロマトグラフィーが広く普及しており、実務的にも測定機器を含めた測定環境に問題が無いことから、本規格案においては、本品の定量法及び不純物の定量法として液体クロマトグラフィーを採用した. 不純物の数値化が難しい融解範囲の重要性は低いことから採用しないこととした.

ネオテームの規格案及び国際規格との比較

	規格項目	本規格案	JECFA	FCC
含量		97.0~102.0%	97.0~102.0%	97.0~102.0%
		(無水物換算)	(無水物換算)	(乾燥物換算)
性状	外観	白~灰白色の粉末	白色〜灰白色の粉末	白色〜灰白色の粉末
	溶解性	設定せず	_	水にやや溶けにくく, アルコール及び酢酸エ チルに溶けやすい
	液性	(純度試験に設定)		pH5.0~7.0 (0.5%水溶液)
確認試験	赤外吸収スペクトル	臭化カリウム錠剤法 参照スペクトルと比較	臭化カリウム錠剤法 参照スペクトルと比較	臭化カリウム錠剤法 参照スペクトルと比較
	溶解性	設定せず	水にやや溶けにくく, アルコールに溶けやす い	_
	比旋光度	- 40.0° ~ - 43.4° (0.25 g,水,50ml, 無水物換算)	- 40.0° ~ - 43.3° (0.5%水溶液, 無水物換算)	- 40.0° ~ - 43.4° (250mg,水,50ml, 乾燥物換算)
	液性	pH5.0~7.0 (1.0g,水 200ml)	pH5.0~7.0 (0.5%水溶液)	_
	鉛	1 μg/g 以下	1 mg/kg 以下	1 mg/kg 以下
純度試験	ヒ素	As ₂ O ₃ として4 µg/g以下	_	_
	シ゛メチルブチ			
	ルアスハ゜ルチル	1.5%以下	1.5%以下	1.5%以下
	フェニルアラニン			
	その他の	2.0%以下	2.0%以下	2.0%以下
	関連物質			2.0,00.1
	融解範囲	設定せず	81∼84°C	
水分		5.0%以下	5.0%以下	5.0%以下
		(0.25g, 直接滴定)	(0.025g, 電量滴定法)	(0.025g, 電量滴定法)
強熱残分		0.2%以下	0.2%以下	0.2%以下