既存化学物質審査シート(生態影響)

(平成20年7月25日開催)

官報公示	CAS No.	AL SE O TL	判定結果		
整理番号	CAS No.	│	人健康影響	生態影響	頁
3-4148	348-61-8	1ーブロモー3, 4ージフルオロベンゼン	二監相当 【告示済み】	三監相当	1
3-4071	350-30-1	3-クロロー4-フルオロニトロベンゼン	二監相当 【告示済み】	三監相当	3
4-1686	620-93-9	ジーpートリルアミン	二監相当 【告示済み】	三監相当	5
4-1656	2222-33-5	5Hージベンゾ[a, d]シクロヘプテンー5ーオン	二監相当 【告示済み】	三監相当	7
3-4173	2479-46-1	4, 4'ー(mーフェニレンジオキシ)ジアニリン	二監相当 【告示済み】	三監相当	9
4-1709	6807-17-6	4, 4'ー(1, 3ージメチルブチリデン)ジフェノール	二監相当 【告示済み】	三監相当	11
5-6262	22720-75-8	2-アセチルベンゾ[b]チオフェン	二監相当 【告示済み】	三監相当	13
4-329	90-30-2	1 - (N-フェニルアミノ) - ナフタレン	***************************************	三監相当	15
4-575	91-17-8	ビシクロ[4, 4, 0]デカン	***************************************	三監相当	17
5-724	504-24-5	4ーアミノピリジン	***************************************	三監相当	19
3-907	615-58-7	2, 4ージブロモフェノール	***************************************	三監相当	21
3-290	634-93-5	2, 4, 6トリクロロアニリン	***************************************	三監相当	23
4-1819	827-52-1	シクロヘキシルベンゼン	二監相当 【告示済み】	三監相当	25
5–137	948-65-2	2ーフェニルインドール		三監相当	27

	初貫番宜ンート			
官報公示 整理番号	3-4148 CAS No. 348-61-8			
判定結果	人健康影響 第二種監視化学物質相当【平成7年5月23日告示済み】 生態影響 第三種監視化学物質相当			
名称 構造式等	名 称:1-ブロモ-3,4-ジフルオロベンゼン F			
	Br			
外観	薄い黄色透明液体			
分解性	難分解性			
蓄積性	高濃縮性でない			
人健康影	第二種監視化学物質相当【新規化学物質として審議済み】			
響判定根	※試験結果は企業に帰属するものであるため非公開。			
拠	2. = 1			
藻類生長	生物種:Pseudokirchneriella subcapitata			
阻害試験				
【13年】	培養方式:振とう培養 (密閉系)			
	純度:99.8%			
	試験濃度:設定濃度 5.0、7.3、11、16、23、34、50 mg/L			
	実測濃度 2.1、3.4、5.1、7.4、10、15、22 mg/L(幾何平均值)			
	助剤:なし MPL ProCSO (実別ははまだく) - 14			
	48hErC50(実測値に基づく)=14 mg/L 48hNOECr(実測値に基づく)=5.1 mg/L			
ミジンコ				
急性遊泳	生物種:オオミジンコ Daphnia magna 試験法:OECD TG 202(1984)			
心 正 起 你 阻害試験	試験方法:半止水式、24 時間後に換水			
	純度:99.8%			
	試験濃度:設定濃度 3.0、4.6、6.9、11、16 mg/L			
	実測濃度 2.1、3.3、4.8、7.7、12 mg/L(幾何平均值)			
	助剤:なし			
	48hEC50(実測値に基づく) =6.3 mg/L			
ミジンコ	生物種:オオミジンコ Daphnia magna			
繁殖阻害	試験法:OECD TG 211(1998)			
試験	試験方法:半止水式、毎日換水			
	純度:99.8%			
	試験濃度:設定濃度 0.20、0.50、1.3、3.2、8.0 mg/L			
	実測濃度 0.16、0.37、0.91、2.0、5.0 mg/L (時間加重平均値)			
	助剤:なし SINOFC (体別はなまずく) 0.01 g			
	21dNOEC(実測値に基づく) = 0.91 mg/L			

魚類急性 生物種:ヒメダカ Oryzias latipes 毒性試験 試験法: OECD TG 203 (1992)

試験方法:半止水式、24時間毎に換水

純度:99.8%

試験濃度:設定濃度 5.0、8.9、16、28、50 mg/L

実測濃度 2.6、4.9、9.7、19、35 mg/L (幾何平均值)

助剤:なし

96hLC50 (実測値に基づく) = 7.8 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

4.9mg/L 群:異常遊泳(動作の緩慢)(72hr 2/9、96hr 5/7)

遊泳不能(96hr 1/7)

生態影響 判定根拠

備考

魚類急性毒性試験において 96hLC50=7.8mg/L であることから、第三種監視化学物質相

対水溶解度:300mg/L (試験機関測定値 (純水、20℃))

	物貝番宜ンート 		
官報公示 整理番号	3-4071 CAS No. 350-30-1		
判定結果	人健康影響 第二種監視化学物質相当【平成元年3月7日告示済み】 生態影響 第三種監視化学物質相当		
名称 構造式等	名 称:3-クロロー4-フルオロニトロベンゼン Cl		
	N ⁺ ——F		
外観	微黄色結晶		
分解性	難分解性		
蓄積性	高濃縮性でない		
人健康影響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。		
藻類生長	生物種: <i>Pseudokirchneriella subcapitata</i>		
阻害試験	試験法:OECD TG 201(1984)		
【13年】	培養方式:振とう培養		
110 1	純度:99.5%		
	試験濃度:設定濃度 0.10、0.15、0.22、0.32、0.46、0.68、1.0 mg/L		
	実測濃度 0.072、0.10、0.15、0.21、0.31、0.48、0.71 mg/L (幾何平均值)		
	助剤:なし		
	72hErC50(実測値に基づく)=0.60 mg/L		
	72hNOECr(実測値に基づく)=0.31 mg/L		
	※実測濃度 0.48mg/L と 0.71mg/L の区で細胞の膨潤が見られた。		
ミジンコ	of the same of the		
急性遊泳	試験法:OECD TG 202(1984)		
阻害試験	試験方法:止水式		
	純度:99.5%		
	試験濃度:設定濃度 5.0、7.0、10、14、20 mg/L		
	実測濃度 4.4、6.3、8.8、12、18 mg/L(幾何平均値)		
	助剤:なし		
ミジンコ	48hEC50 (設定値に基づく) =8.2 mg/L		
繁殖阻害	生物種:オオミジンコ Daphnia magna 試験法:OECD TG 211(1998)		
試験	試験方法:半止水式、毎日換水		
H-VID	純度:99.5%		
	試験濃度:設定濃度 0.080、0.25、0.80、2.5、8.0 mg/L		
	実測濃度 0.072、0.23、0.71、2.2、7.2 mg/L (時間加重平均値)		
	助剤:なし		
	21dNOEC(設定値に基づく) =0.25 mg/L		

無類急性 生物種:ヒメダカ Oryzias latipes 毒性試験 試験法:OECD TG 203 (1992)

試験方法:半止水式、24時間毎に換水

純度:99.5%

試験濃度:設定濃度 0.50、0.87、1.5、2.6、4.5 mg/L

実測濃度 0.45、0.74、1.3、2.3、4.0 mg/L (幾何平均值)

助剤:なし

96hLC50(設定値に基づく)=2.0 mg/L

生態影響 判定根拠 藻類生長阻害試験において 72hErC50=0.60mg/L 及び魚類急性毒性試験において

| 96hLC50=2.0mg/L であることから、第三種監視化学物質相当。

備考

対水溶解度:380mg/L (試験機関測定値 (純水、20℃))

处行11十	例 負 番 登 シート
官報公示 整理番号	4-1686 CAS No. 620-93-9
判定結果	人健康影響 第二種監視化学物質相当【平成4年11月19日告示済み】 生態影響 第三種監視化学物質相当
名称 構造式等	名 称: ジーpートリルアミン
外観	微橙黄色結晶性粉末
分解性 蓄積性	難分解性 高濃縮性でない
人健康影 響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。
藻類生長 阻害試験 【13 年】	生物種: Pseudokirchneriella subcapitata 試験法: OECD TG 201 (1984) 培養方式: 振とう培養 純度: 99.6% 試験濃度: 設定濃度 0.030、0.048、0.077、0.12、0.20、0.31、0.50 mg/L 実測濃度 -、0.019、0.035、0.052、0.099、0.18、0.34 mg/L(幾何平均値) 助剤: DMF 50 μ L/L 72hErC50 (実測値に基づく) = 0.14 mg/L 72hNOECr (実測値に基づく) = 0.019 mg/L
ミジンコ 急性遊泳 阻害試験	生物種:オオミジンコ Daphnia magna 試験法:OECD TG 202 (1984) 試験方法:止水式 純度:99.6% 試験濃度:設定濃度 0.10、0.18、0.32、0.56、1.0 mg/L 実測濃度 0.094、0.17、0.31、0.50、0.93 mg/L (幾何平均値) 助剤:DMF 100µL/L 48hEC50 (設定値に基づく) =0.40 mg/L
ミジンコ繁殖阻害試験	生物種:オオミジンコ Daphnia magna 試験法:OECD TG 211 (1998) 試験方法:半止水式、毎日換水 純度:99.6% 試験濃度:設定濃度 0.010、0.025、0.063、0.16、0.40 mg/L 実測濃度 0.009、0.024、0.062、0.14、0.37 mg/L (時間加重平均値) 助剤:DMF 100 μ L/L 21dNOEC (設定値に基づく) =0.025 mg/L

無類急性 生物種:ヒメダカ Oryzias latipes 毒性試験 試験法:OECD TG 203 (1992) 試験方法:半止水式、24 時間毎に換水 純度:99.6%

試験濃度:設定濃度 0.30、0.41、0.55、0.74、1.0 mg/L

実測濃度 0.21、0.32、0.43、0.61、0.79 mg/L(幾何平均值)

助剤: DMF 100 µ L/L

96hLC50(実測値に基づく)=0.43 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

0.32mg/L 群:異常遊泳(動作の緩慢)(96hr 3/7)

生態影響 判定根拠 藻類生長阻害試験において 72hErC50=0.14mg/L、72hNOECr=0.019mg/L、ミジンコ急性遊泳阻害試験において <math>48hEC50=0.40mg/L、ミジンコ繁殖阻害試験において <math>21dNOEC=0.025mg/L 及び魚類急性毒性試験において 96hLC50=0.43mg/L であることから、第三

備考 対水溶解度:3 mg/L

対水溶解度:3 mg/L (試験機関測定値 (純水、20℃))

	勿負番金シート				
官報公示 整理番号	4-1656 CAS No. 2222-33-5				
判定結果	人健康影響 第二種監視化学物質相当【平成2年3月26日告示済み】 生態影響 第三種監視化学物質相当				
名称 構造式等	名 称: 5H-ジベンゾ [a, d] シクロヘプテン-5-オン				
外観	淡黄色粉末				
分解性	難分解性 京灣(4) (4) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6				
蓄積性	高濃縮性でない				
人健康影 響判定根	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するよのであるためませい思				
鲁刊足依 拠	※試験結果は企業に帰属するものであるため非公開。				
藻類生長	生物種: <i>Pseudokirchneriella subcapitata</i>				
	主物種:Fseudokircnneriella subcapitata 試験法:OECD TG 201(1984)				
【12年】	培養方式:振とう培養				
	純度:97%				
	試験濃度:設定濃度 0.022、0.046、0.10、0.22、0.46 mg/L				
	実測濃度 - 、-、0.047、0.17、0.38 mg/L (幾何平均值)				
	助剤: DMF: HCO-40 1:9 (14 mg/L)				
	72hErC50 (実測値に基づく) =0.14 mg/L				
33277	72hNOECr (実測値に基づく) =0.011 mg/L				
	生物種:オオミジンコ Daphnia magna 試験法: OECD TG 202 (1984)				
DD 0 0	試験方法:止水式				
	純度:97%				
	試験濃度:設定濃度 0.32、0.56、1.0、1.8、3.2 mg/L				
	実測濃度 0.34、0.56、0.96、1.6、2.7 mg/L(幾何平均値)				
	助剤: DMF: HCO-40 1:9 (96 mg/L)				
	48hEC50(実測値に基づく) = 1.9 mg/L				
Aug	生物種: オオミジンコ Daphnia magna				
~ 6 6	試験法:OECD TG 211(1998) 試験方法、光点水学、48 時間気に換水				
	試験方法:半止水式、48 時間毎に換水 純度:97%				
	試験濃度:設定濃度				
	実測濃度 0.048、0.099、0.23、0.47、0.99mg/L (時間加重平均値)				
	助剤: DMF: HCO-40 1:9 (30 mg/L)				
	21dNOEC(設定値に基づく)=0.22 mg/L				

魚類急性生物種: ヒメダカ Oryzias latipes毒性試験試験法: OECD TG 203 (1992)

試験方法:半止水式、48時間後に換水

純度:97%

試験濃度:設定濃度 3.2 mg/L(分散可能最高濃度*)

実測濃度 2.5 mg/L (幾何平均值、分散画分)

助剤:DMF:HCO-40 1:9 (100 mg/L)

96hLC50 (実測値に基づく) >2.5 mg/L (溶解限度で影響が認められなかった。)

※試験機関測定値

生態影響 藻類生長阻害試験において 72hErC50=0.14mg/L、72hNOECr=0.011mg/L であることか

判定根拠 | ら、第三種監視化学物質相当。

備考 対水溶解度:不明(報告書記載なし)

现行10于	物質番金ンート			
官報公示 整理番号	3-4173 CAS No. 2479-46-1			
判定結果	人健康影響 第二種監視化学物質相当【平成8年12月17日告示済み】 生態影響 第三種監視化学物質相当			
名称	名 称:4,4'-(m-フェニレンジオキシ)ジアニリン			
構造式等				
	H_2N \wedge			
外観	明るい灰黄色結晶性粉末および小塊			
分解性	難分解性			
蓄積性	高濃縮性でない			
人健康影				
響判定根	※試験結果は企業に帰属するものであるため非公開。			
拠				
藻類生長	生物種:Pseudokirchneriella subcapitata			
阻害試験	試験法:OECD TG 201(1984)			
【13年】	培養方式:振とう培養			
	純度:99.6%			
	試験濃度:設定濃度 0.030、0.065、0.14、0.30、0.65、1.4、3.0 mg/L			
	実測濃度 0.0087、0.028、0.072、0.17、0.40、0.85、2.2 mg/L (幾何平均值)			
	助剤: DMF 100 µ L/L			
	72hErC50(実測値に基づく)>2.2 mg/L			
ミジンコ	72hNOECr (実測値に基づく) =0.40 mg/L			
ミンノコ 急性遊泳	生物種:オオミジンコ Daphnia magna			
恐住姓休	試験法: OECD TG 202(1984)			
阻古叫歌	試験方法:止水式 純度:99.6%			
<u> </u>				
	試験濃度:設定濃度 0.90、1.2、1.6、2.2、3.0 mg/L 実測濃度 0.87、1.2、1.6、2.1、3.0 mg/L (終何平均は)			
	実測濃度 0.87、1.2、1.6、2.1、2.9 mg/L (幾何平均値) 助剤: DMF 100μL/L			
	48hEC50(設定値に基づく)=2.9 mg/L			
ミジンコ	生物種:オオミジンコ Daphnia magna			
	試験法: OECD TG 211 (1998)			
試験	試験方法:半止水式、毎日換水			
]	純度:99.6%			
	試験濃度:設定濃度 0.0030、0.0095、0.030、0.095、0.30 mg/L			
	実測濃度 0.0026、0.0091、0.029、0.089、0.34 mg/L (時間加重平均値)			
,	助剤: DMF 100 µ L/L			
	21dNOEC(実測値に基づく)=0.029 mg/L			

魚類急性 | 生物種:ヒメダカ Oryzias latipes 毒性試験 試験法: OECD TG 203 (1992) 試験方法:半止水式、24時間毎に換水 純度:99.6% 試験濃度:設定濃度 0.90、1.2、1.6、2.2、3.0 mg/L 実測濃度 0.88、1.2、1.5、2.2、3.0 mg/L (幾何平均值) 助剤: DMF 100 µ L/L 96hLC50(設定値に基づく) =1.9 mg/L また、以下の濃度群において以下のような毒性症状が認められた。 1.2mg/L 群:異常遊泳(動作の緩慢)(24h 8/10、48h 5/10、72h 5/10、96hr 5/10) 1.6mg/L 群:異常遊泳(動作の緩慢)(24h 10/10、48h 5/10、72h 8/10、96h 6/10) 遊泳不能(72h 2/10、96h 4/10) 構造中に芳香族アミンを有しかつミジンコ急性遊泳阻害試験において 48hEC50 生態影響 =2.9mg/L、ミジンコ繁殖阻害試験において 21dNOEC=0.029mg/L 及び魚類急性毒性試験 判定根拠 において 96hLC50=1.9mg/L であることから、第三種監視化学物質相当。 対水溶解度:3 mg/L (試験機関測定値、純水、20℃) 備考

	初貫番宜ンート
官報公示 整理番号	4-1709 CAS No. 6807-17-6
判定結果	人健康影響 第二種監視化学物質相当【平成8年12月17日告示済み】 生態影響 第三種監視化学物質相当
名称 構造式等	名 称: 4, 4'-(1, 3-ジメチルブチリデン) ジフェノール OH OH OH
外観	白色微細結晶および結晶性粉末
分解性	難分解性
蓄積性	高濃縮性でない
人健康影 響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。
藻類生長 阻害試験 【12 年】	生物種: Pseudokirchneriella subcapitata 試験法: OECD TG 201 (1984) 培養方式: 振とう培養 純度: 100% 試験濃度: 設定濃度 17 mg/L (分散可能最高濃度*) 実測濃度 17 mg/L (幾何平均値) 助剤: HCO-40 100 mg/L 72hErC50 (設定値に基づく) >17 mg/L 72hNOECr (設定値に基づく) >17 mg/L (溶解限度で影響が認められなかった)
ミジンコ 急性遊泳 阻害試験	 ※試験機関測定値 生物種:オオミジンコ Daphnia magna 試験法:OECD TG 202 (1984) 試験方法:止水式 純度:100% 試験濃度:設定濃度 1.6、2.8、5.1、9.0、16 mg/L 実測濃度 1.6、2.7、4.9、8.7、15 mg/L (幾何平均値) 助剤:HCO-40 96mg/L 48hEC50 (設定値に基づく) =13 mg/L

ミジンコ	生物種:オオミジンコ Daphnia magna
繁殖阻害	試験法:OECD TG 211(1998)
試験	試験方法:半止水式、48 時間毎に換水
	純度:100%
	試験濃度:設定濃度 0.50、1.1、2.3、5.1、11 mg/L
	実測濃度 0.47、1.1、2.2、5.0、11 mg/L(時間加重平均値)
	助剤:DMF:HCO-60 1:5(99 mg/L)
	21dNOEC(設定値に基づく)=0.50 mg/L
魚類急性	生物種:メダカ Oryzias latipes
▋毒性試験	試験法:OECD TG 203(1992)
	試験方法:半止水式、24 時間毎に換水
	純度:100%
	試験濃度:設定濃度 1.0、1.8、3.2、5.6、10 mg/L
	実測濃度 0.95、1.8、3.2、5.5、10 mg/L(幾何平均值)
	助剤:THF:HCO-40 1:4(100 mg/L)
	96hLC50(設定値に基づく)=2.7 mg/L
生態影響	魚類急性毒性試験において 96hLC50=2.7mg/L であることから、第三種監視化学物質相
判定根拠	当。
備考	対水溶解度:不明(報告書に記載なし)

以行化子1	物質審査シート			
官報公示 整理番号	5-6262 CAS No. 22720-75-8			
判定結果	人健康影響 第二種監視化学物質相当【平成8年12月17日告示済み】 生態影響 第三種監視化学物質相当			
名称 構造式等	名 称:2-アセチルベンゾ [b] チオフェン			
外観	赤みの薄い黄色粉末および小塊			
分解性	難分解性			
蓄積性	高濃縮性でない			
人健康影響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。			
藻類生長	生物種:Pseudokirchneriella subcapitata			
阻害試験	試験法:OECD TG 201(1984)			
【13年】	培養方式:振とう培養			
	純度:99.9%			
	試験濃度:設定濃度 0.20、0.38、0.74、1.4、2.7、5.2、10 mg/L			
	実測濃度 0.18、0.33、0.64、1.2、2.3、4.4、8.5 mg/L(初期実測濃度)			
	助剤:DMF 100 µ L/L			
	72hErC50 (実測値に基づく) = 5.4 mg/L			
	72hNOECr(実測値に基づく)=0.64 mg/L			
ミジンコ	生物種:オオミジンコ Daphnia magna			
急性遊泳	試験法:OECD TG 202(1984)			
阻舌武駅	試験方法:止水式			
	純度:99.9% 試験測度:設定測度 4.0 5.6 7.7 11 15 mg/J			
	試験濃度:設定濃度 4.0、5.6、7.7、11、15 mg/L 実測濃度 3.5、4.9、6.7、9.4、13 mg/L(幾何平均値)			
	助剤:なし			
	48hEC50(設定値に基づく)=11 mg/L			
ミジンコ	生物種:オオミジンコ Daphnia magna			
繁殖阻害	試験法: OECD TG 211 (1998)			
試験	試験方法:半止水式、毎日換水			
	純度:99.9%			
	試験濃度:設定濃度 0.12、0.38、1.2、3.8、12 mg/L			
	実測濃度 0.10、0.32、1.0、3.2、10 mg/L(時間加重平均値)			
	助剤:なし			
	21dNOEC(実測値に基づく)=1.0 mg/L			

魚類急性 毒性試験

魚類急性 生物種:ヒメダカ Oryzias latipes

試験法: OECD TG 203 (1992)

試験方法:半止水式、24時間毎に換水

純度:99.9%

試験濃度:設定濃度 7.0、9.6、13、18、25 mg/L

実測濃度 6.0、8.6、12、16、23 mg/L (幾何平均值)

助剤: DMF 100 µ L/L

96hLC50(設定値に基づく)=10 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

7.0mg/L 群:異常遊泳(動作の緩慢)(72h 2/10)

9.6mg/L 群:異常遊泳(動作の緩慢)(24h 10/10、48h 10/10、72h 7/10、96h 4/4)

遊泳不能 (72h 3/10)

①96hLC50 は正確には 10.1 mg/L である。

生態影響 判定根拠

魚類急性毒性試験において96hLC50=10mg/Lであることから、第三種監視化学物質相当。

備考

対水溶解度:46mg/L (試験機関測定値 (純水、20℃))

AT FOUND	4.000				
官報公示	4-329	CAS No.	90-30-2		
整理番号					
判定結果	生態影響 第三種監視化学物質	 相当			
名称	名 称:1-(N-フェニルアミ)	ノ)ーナフタ	アレン		
構造式等					
		HI			
用途	添加剤(油用)※化学物質の製造・輸	1月2月オス	中能細木 (亚中1 6 左中体)		
外観	褐色個体	人里に関する	天思調宜(平成16年実績)		
分解性					
蓄積性	難分解性	· · · · · · · · · · · · · · · · · · ·			
	高濃縮性でない				
藻類生長	生物種: Pseudokirchneriella sub	bcapitata			
阻害試験	試験法:化審法 TG(2003)				
	培養方式:振とう培養				
	純度:99.7%				
	試験濃度:設定濃度 1.0、3.2、10	. 32, 100%	6(100 mg/L で調製した水溶性画分(WSF))		
	実測濃度 0.0022、0.00	036、0.006	4、0.022、0.15 mg/L(幾何平均值)		
	助剤:なし		-		
	72hErC50(実測値に基づく)=0.				
	72hNOECr(実測値に基づく)=(0.0036 mg/L			
			5mg/L区において細胞凝集が見られた。		
ミジンコ	生物種:オオミジンコ Daphnia magna				
急性遊泳	試験法:化審法 TG				
阻害試験	試験方式:半止水式(密閉系)、24	時間後に換	水		
	純度:99.7%				
	試験濃度:設定濃度 9.9、15、22	、33、50%	(100 mg/L で調製した水溶性画分(WSF))		
			、0.60 mg/L(幾何平均值)		
	助剤:なし				
	48hEC50(実測値に基づく)=0.2	6 mg/L			

魚類急性 | 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法:化審法 TG

試験方式:流水式 純度:99.7%

試験濃度:設定濃度 0.32、0.47、0.71、1.1、1.6 mg/L

実測濃度 0.24、0.35、0.57、0.87、1.2 mg/L (算術平均値)

助剤: DMF 0.10 mL/L

96hLC50 (実測値に基づく) =0.70 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

0.35 mg/L 群:完全平衡喪失(96hr 2/7)

活動度の低下 (96h 2/7)

0.57 mg/L 群:表層集中(72h1/7)

完全平衡喪失(48hr 3/7、72hr 3/7、96hr 4/6) 部分的平衡喪失(48hr 1/7、72hr 2/7、96hr 2/6) 活動度の低下(48hr 4/7、72hr 7/7、96hr 6/6)

生態影響 | 薄 判定根拠 | 急

藻類生長阻害試験において 72hErC50=0.034mg/L、72hNOECr=0.0036mg/L、ミジンコ 急性遊泳阻害試験において 48hEC50=0.26mg/L 及び魚類急性毒性試験において 96hLC50=0.70mg/L であることから、第三種監視化学物質相当。

環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S55	0/36		$0.025\sim0.1(\mu \text{g/L})$
		S56	0/126		0.1(μg/L)
	底質	S55 S56	9/36 0/126	0.0044~0.04	0.0013 \sim 0.02(μ g/g-dry) 0.005(μ g/g-dry)
	魚類	S56	0/123	_	0.005(μg/g-wet)

備考 ※1 S56、57版「化学物質と環境」(環境省環境保健部環境安全課)

対水溶解度: 60mg/L (文献值、25℃)

官報公示	4-575 CAS No. 91-17-8			
整理番号				
判定結果	生態影響 第三種監視化学物質相当			
名称	名 称:ビシクロ [4, 4, 0] デカン			
構造式等				
}				
外観	無色液体			
分解性	難分解性			
蓄積性	高濃縮性でない			
藻類生長				
阻害試験	主物種: Fseudokirchneriena suocapitata 試験法:化審法 TG(2006)			
111 11 11 11 11 11	培養方式:振とう培養(密閉系)			
	純度:99.9% (trans 34.7%、cis65.2%)			
	試験濃度:設定濃度 12、20、35、59、100% (10 mg/L で調製した水性画分(WAF))			
	実測濃度 0.0078、0.0086、0.015、0.026、0.051 mg/L(幾何平均值)			
<u> </u> 	助剤:なし			
	72hErC50(実測値に基づく)>0.051 mg/L			
,	72hNOECr(実測値に基づく) >0.051 mg/L			
	3			
	※全濃度区で細胞凝集が見られた。			
	※培地への溶解度(23±1℃): 0.96 mg/L			
ミジンコ	1			
急性遊泳	試験法:化審法 TG			
阻害試験	試験方式:半止水式(密閉系)、24 時間後に換水			
	純度:99.9%(trans 34.7%、cis65.2%)			
	試験濃度:設定濃度 9.5、17、31、56、100% (10 mg/L で調製した水性画分(WAF))			
	実測濃度 0.051、0.089、0.16、0.33、0.75 mg/L(幾何平均値)			
,	助剤:なし			
	48hEC50(実測値に基づく) =0.23 mg/L			
	※試験用水への溶解度(20±1℃): 0.81 mg/L			
魚類急性				
毒性試験	式験法: 化審法 TG			
	試験方式:半止水式 (密閉系)、24 時間毎に換水			
	純度:99.9%(trans 34.7%、cis65.2%)			
	試験濃度:設定濃度 9.5、17、31、56、100% (10 mg/L で調製した水性画分(WAF))			
	実測濃度 0.034、0.059、0.12、0.19、0.47 mg/L(幾何平均值)			
	助剤:なし			
	96hLC50(実測値に基づく)=0.37 mg/L			
	※試験用水への溶解度(24±1℃): 0.85 mg/L			
	助剤:なし 96hLC50(実測値に基づく)=0.37 mg/L			

生態影響 判定根拠	藻類生長阻害試験において 72hNOECr=0.015mg/L、ミジンコ急性遊泳阻害試験において 48hEC50=0.23mg/L 及び魚類急性毒性試験において 96hLC50=0.37mg/L であることから、第三種監視化学物質相当。				
環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S59	0/18	_	$0.02\sim 0.1 (\mu \text{ g/L})$
	底質	S59	0/18		$0.005 \sim 0.022 (\mu \text{ g/g-dry})$
	魚類		.	_	
環境調査	水質	S59	0/18		$0.01 \sim 0.07 (\mu \text{ g/L})$
※ 2	底質	S59	4/18	0.006~0.181	$0.002 \sim 0.016 (\mu \text{ g/g-dry})$
	魚類	-		—	<u> </u>
備考				(環境省環境保健部環境安全 (環境省環境保健部環境安全	

PC11 10 1.	勿貝番宜 、						
官報公示 整理番号	5-724			CAS No.	504-24-5		
判定結果	生態影響 第三種監視化学物質相当						
				~\II-			
名称	名 称:	4ーアミノ	ピリジン				
構造式等							
		$N($ $)$ \longrightarrow NH_2					
外観		い赤褐色微	細結晶				
分解性 蓄積性	難分解性 高濃縮性	でたし、			· · · · · · · · · · · · · · · · · · ·		
藻類生長 阻害試験		<i>Pseudokir</i> 化審法 TG		subcapitata			
HI II III III		に無法 10 :振とう培え	-				
	純度:99.	.8%					
	試験濃度			5.6, 12, 27			
			1.2, 2.6,	5.6、12、27	、60 mg/L(幾	何平均値)	
		助剤:なし 72hErC50(設定値に基づく)=30 mg/L					
i '	72hErC50 (設定値に基づく) = 50 mg/L 72hNOECr (設定値に基づく) = 12 mg/L						
ミジンコ		オオミジン	□ <i>Daphnia</i>	magna			
急性遊泳 阻害試験	試験法:化審法 TG 試験方式:止水式						
阻古以数	試験力式 純度:99.	· ·					
			1.9, 3.8,	7.5, 15, 30	、60 mg/L		
		実測濃度			62 mg/L(幾何	平均値)	
	助剤:な 401-PO50		せべく	1 ° /T			
魚類急性	48nEU5U 生物種・	<u>(設定値に</u> ヒメダカ <i>O</i> 1	基フく)= vzias latin	15 mg/L			
毒性試験		レハシハ Oi 化審法 TG	yzias iaup	CS			
		試験方式:半止水式、48 時間後に換水					
		純度:99.8%					
	試験濃度				3.6、5.0 mg/L	可亚均估)	
	実測濃度 0.99、-、-、-、-、5.2 mg/L(幾何平均値) 助剤:なし						
	96hLC50	(設定値に	基づく)=	3.4 mg/L			
	 キケ □□	下の漕産群!	アおいて凹っ	下のトろか書ん	生症状が認みたっ	h t-	
	また、以下の濃度群において以下のような毒性症状が認められた。 1.8 mg/L 群:出血(24hr 1/10)						
	2.6 mg/L 群:出血(24hr 1/10)						
			平衡喪失(2				
生態影響 判定根拠	魚類急性語 当。	毒性試験には	さいて 96h]	LC50=3.4mg	/L であること ⁷	から、第三種監視化学物質相	
環境調査	媒体	実施年度	検体	検出	出範囲	検出下限値	
※ 1	水質	S58	0/30			$0.1\sim 3(\mu{\rm g/L})$	
	底質	S58	0/30			$0.005 \sim 0.12 (\mu \text{g/g-dry})$	

	魚類	_			_
備考	対水溶解	度: 易溶	勿質と環境」 (化学大辞史	(環境省環境保健部環境安全 性)	課)
	pKa: 9.1	7 (20°C)			

+++ 1) =						
官報公示	3-907 CAS No. 615-58-7					
整理番号						
判定結果	生態影響 第三種監視化学物質相当					
名称	名 称:2,4ージブロモフェノール					
構造式等	$\begin{pmatrix} 11 & 11 & 11 & 11 & 11 & 11 & 11 & 11$					
特坦八寸	, OH					
	5.11					
	Br					
外観	無色針状晶					
分解性	難分解性					
蓄積性	高濃縮性でない					
藻類生長	生物種: Pseudokirchneriella subcapitata					
阻害試験	試験法:化審法 TG(2003)					
	培養方式:振とう培養					
	純度:98.4%					
	試験濃度:設定濃度 0.10、0.32、1.0、3.2、10 mg/L					
	実測濃度 0.031、0.10、0.35、1.0、4.0 mg/L(幾何平均値)					
	助剤:なし					
	72hErC50(実測値に基づく)=1.1 mg/L					
	72hNOECr(実測値に基づく)=0.10 mg/L					
	※1.0、4.0mg/L 群において細胞膨張、1.0、0.35mg/L 群において細胞凝集が見られた。					
ミジンコ	※72hNOECr は正確には 0.101 mg/L である。					
急性遊泳	生物種:オオミジンコ Daphnia magna					
心 正 近 你 阻害試験	試験法:化審法 TG 試験方式:止水式					
	純庚:98.4%					
	試験濃度:設定濃度					
	実測濃度 0.36、0.66、1.2、2.4、4.3 mg/L (幾何平均值)					
	助剤:なし					
	48hEC50(設定値に基づく)=2.1 mg/L					
L						

|魚類急性 | 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法: 化審法 TG

試験方式:半止水式、24時間毎に換水

純度:98.4%

試験濃度:設定濃度 0.91、1.8、2.4、3.1、4.0、5.2 mg/L

実測濃度 0.87、1.8、2.2、2.9、3.8、5.0 mg/L (幾何平均值)

助剤:なし

96hLC50(設定値に基づく)=3.6 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

1.8 mg/L 群:部分平衡喪失(24h1/8)

活動度の低下 (24hr 1/8)

2.4 mg/L 群:表層集中(24hr 4/8、48h1/8、72hr 1/8、96hr 2/8)

完全平衡喪失(24hr 1/8、48h1/8、72hr 1/8、96hr 1/8)

部分平衡喪失(24hr 2/8、48h1/8、72hr 1/8)

活動度の低下(24hr 4/8、48h2/8、72hr 2/8、96hr 2/8)

3.1 mg/L 群:表層集中(24hr 6/8、48h6/8、72hr 7/8、96hr 6/8)

完全平衡喪失(24hr 5/8、48h6/8、72hr 6/8、96hr 5/8) 部分平衡喪失(24hr 3/8、48h2/8、72hr 2/8、96hr 2/8) 活動度の低下(24hr 8/8、48h8/8、72hr 8/8、96hr 7/8)

嗜眠状態(96h1/8)

生態影響 | 藻類生長阻害試験において 72hErC50=1.1mg/L、72hNOECr=0.10mg/L 及び魚類急性毒判定根拠 | 性試験において 96hLC50=3.6mg/L であることから、第三種監視化学物質相当。

備考 対水溶解度: 1.9×10³ mg/L(15℃)(SRC PhysProp Database)、易溶(化学大辞典)

i tπ /\ =	0.000						
官報公示	3-290 CAS No. 634-93-5						
整理番号							
判定結果	生態影響 第三種監視化学物質相当						
D The	A 4 . 0 . 4 . C . I II berner I . I .						
■名称 ■構造式等	名 称:2,4,6ートリクロロアニリン						
	CI						
	/ ^{Ci}						
	/						
<u> </u>							
l i	$CI \longrightarrow (()) \longrightarrow NH_2$						
外観	State CI St						
<u>/ </u>	難分解性						
蓄積性	高濃縮性でない						
藻類生長 阻害試験	生物種: Pseudokirchneriella subcapitata						
阻音砜釈	試験法:化審法 TG(2003)						
	培養方式:振とう培養						
	純度:99.9%						
	試験濃度: 設定濃度 0.30、0.95、3.0、9.5、30% (100 mg/L で調製した水溶性画分(WSF)) 実測濃度 0.069、0.23、0.71、2.5、7.5 mg/L (幾何平均値)						
	美側優及 0.009、0.23、0.71、2.5、7.5 mg/L (幾何平均値) 助剤:なし						
	72hErC50(実測値に基づく)=3.7 mg/L						
	72hBrC50 (実) 個に基づく) = 3.7 mg/L 72hNOECr (実) 個に基づく) = 0.069 mg/L						
	- 1.11110日 (人)所限に至 ノ (/ 0.000 IIIg/ロ						
	※7.5mg/L 群において細胞凝集が見られた。						
ミジンコ	生物種:オオミジンコ Daphnia magna						
急性遊泳	試験法:化審法 TG						
阻害試験	試験方式:半止水式、24 時間後に換水						
	純度:99.9%						
	試験濃度:設定濃度 0.16、0.34、0.75、1.7、3.6、8.0 mg/L						
	実測濃度 0.14、0.31、0.69、1.5、3.3、6.8 mg/L(幾何平均値)						
	助剤:なし						
	48hEC50(実測値に基づく) =4.3 mg/L						

魚類急性 | 生物種:ヒメダカ Oryzias latipes

毒性試験 | 試験法: 化審法 TG

試験方式:半止水式、24時間毎に換水

純度:99.9%

試験濃度:設定濃度 0.97、2.9、4.1、5.7、8.0 mg/L

実測濃度 0.88、2.7、3.8、5.4、7.5 mg/L (幾何平均值)

助剤:なし

96hLC50 (実測値に基づく) =5.3 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

2.7 mg/L 群:表層集中(24hr 3/10、48h5/10、72hr 7/10、96hr 7/10)

完全平衡喪失(48h3/10、72hr 3/10、96hr 3/10)

部分平衡喪失(72hr 1/10、96hr 1/10)

活動度の低下(48h3/10、72hr 4/10、96hr 4/10)

3.8 mg/L 群:表層集中(24hr 6/10、48h6/10、72hr 4/6、96hr 6/6)

完全平衡喪失(24h5/10、48h5/10、72hr 3/6、96hr 5/6)

部分平衡喪失(24hr 2/10、48hr 2/10、96hr 1/6)

活動度の低下 (24h7/10、48h7/10、72hr 3/6、96hr 6/6)

生態影響判定根拠

構造中に芳香族アミンを有しかつミジンコ急性遊泳阻害試験において 48hEC50 = 4.3mg/L、藻類生長阻害試験において 72hNOECr=0.069mg/L 及び魚類急性毒性試験において 96hLC50=5.3mg/L であることから、第三種監視化学物質相当。

環境調査	媒体	実施年度	検体	検出範囲	検出下限値
※ 1	水質	S56	0/15	_	$0.001\sim0.005(\mu \text{ g/L})$
	底質	S56	0/15	_	$0.0002\sim0.001(\mu \text{g/g-dry})$
	魚類		_	_	_

備考 ※1 S57版「化学物質と環境」(環境省環境保健部環境安全課) 対水溶解度: 40 mg/L(25℃) SRC PhysProp Database

2011 10 1	物質番盆ンート ター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
官報公示 整理番号	4-1819 CAS No. 827-52-1
判定結果	人健康影響 第二種監視化学物質相当【平成14年2月14日告示済み】 生態影響 第三種監視化学物質相当
名称 構造式等	名 称:シクロヘキシルベンゼン
外観	無色透明液体
分解性	難分解性
蓄積性	高濃縮性でない
人健康影 響判定根 拠	第二種監視化学物質相当【新規化学物質として審議済み】 ※試験結果は企業に帰属するものであるため非公開。
阻害試験	生物種: Pseudokirchneriella subcapitata 試験法: 化審法 TG(2006) 培養方式: 振とう培養(密閉系) 純度: 99.2% 試験濃度: 設定濃度 2.6、6.4、16、40、100%(100 mg/L で調製した水性画分(WAF)) 実測濃度 0.052、0.11、0.32、0.73、2.1 mg/L(幾何平均値) 助剤: なし 72hErC50(実測値に基づく)=0.69 mg/L 72hNOECr(実測値に基づく)=0.11 mg/L ※培地への溶解度(23±1℃): 4.5 mg/L
ミジンコ	生物種:オオミジンコ Daphnia magna
急性遊泳	試験法:化審法 TG
阻害試験	試験方式:止水式(密閉系)
	純度:99.2% 試験濃度:設定濃度 2.9、5.1、9.3、17、30% (100 mg/L で調製した水性画分(WAF)) 実測濃度 0.087、0.16、0.29、0.53、0.94 mg/L (幾何平均値) 助剤:なし 48hEC50 (実測値に基づく) =0.37 mg/L
	※試験用水への溶解度(20±1℃): 3.8 mg/L

| 魚類急性 | 生物種:ヒメダカ Oryzias latipes |

毒性試験 | 試験法:化審法 TG

試験方式:半止水式(密閉系)、24時間毎に換水

純度:99.2%

試験濃度:設定濃度 9.5、17、31、56、100% (100 mg/L で調製した水性画分(WAF))

実測濃度 0.25、0.46、0.83、1.5、3.0 mg/L (幾何平均值)

助剤:なし

96hLC50 (実測値に基づく) =1.2 mg/L

また、以下の濃度群において以下のような毒性症状が認められた。

0.83 mg/L 群:活動度の低下 (96hr 1/8)

※試験用水への溶解度(24±1℃): 3.9 mg/L

生態影響 判定根拠

藻類生長阻害試験において 72hErC50=0.69mg/L、ミジンコ急性遊泳阻害試験において 48hEC50=0.37mg/L 及び魚類急性毒性試験において 96hLC50=1.2mg/L であることか

ら、第三種監視化学物質相当。

備考

	初負番宜ンート
官報公示 整理番号	5-137 CAS No. 948-65-2
判定結果	生態影響 第三種監視化学物質相当
名称 構造式等	名 称: 2-フェニルインドール
 外観	
分解性	極薄い黄色結晶性粉末 難分解性
蓄積性	高濃縮性でない
藻類生長 阻害試験 	生物種: Pseudokirchneriella subcapitata 試験法:化審法 TG 培養方式:振とう培養 純度:99.6% 試験濃度:設定濃度 1.0、3.2、10、32、100% (100 mg/L で調製した水溶性画分(WSF)) 実別濃度 0.0048 0.032 0.080 0.34 11 mg/L (発展型物体)
	実測濃度 0.0048、0.022、0.089、0.34、1.1 mg/L(幾何平均値) 助剤:なし 72hErC50(実測値に基づく)=0.20 mg/L 72hNOECr(実測値に基づく)=0.022 mg/L
	※培地への溶解度(23±1℃): 1.2 mg/L
ミジンコ急性遊泳	生物種:オオミジンコ Daphnia magna
思住近休 阻害試験	試験法:化審法 TG 試験方式:半止水式、24 時間後に換水 純度:99.6%
	試験濃度:設定濃度 6.1、12、22、42、80%(100 mg/L で調製した水溶性画分(WSF)) 実測濃度 0.050、0.10、0.19、0.37、0.71 mg/L(幾何平均値) 助剤:なし
	48hEC50(実測値に基づく) =0.30 mg/L
	※試験用水への溶解度(20±1℃): 0.94 mg/L
魚類急性 毒性試験	生物種:ヒメダカ <i>Oryzias latipes</i> 試験法:化審法 TG 試験方式:半止水式、24 時間毎に換水 純度:99.6%
	試験濃度:設定濃度 7.6、12、20、31、50% (100 mg/L で調製した水溶性画分(WSF)) 実測濃度 0.080、0.13、0.21、0.35、0.58 mg/L (幾何平均値) 助剤:なし
	96hLC50 (実測値に基づく) =0.27 mg/L また、以下の濃度群において以下のような毒性症状が認められた。 0.21 mg/L 群: 体色明化 (96hr 6/7)
	※試験用水への溶解度(24±1℃): 1.2 mg/L

生態影響判定根拠	藻類生長阻害試験において 72hErC50=0.20mg/L、72hNOECr=0.022mg/L、ミジンコ急性遊泳阻害試験において 48hEC50=0.30mg/L 及び魚類急性毒性試験において 96hLC50=0.27mg/L であることから、第三種監視化学物質相当。
備考	対水溶解度:不溶(化学大辞典)